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The search for oligomers that adopt specific conformations
(“foldamers”)1 has recently included many efforts to identify
backbones containing more than one class of subunit. Combinations
involving R- andâ-amino acids have been especially popular,2-12

and other systems have been examined as well.13-17 In early studies,
we found that folding of shortR/â-peptides with a 1:1 alternation
of R- andâ-residues is promoted byâ-residues that have a five-
membered ring constraint, such astrans-2-aminocyclopentanecar-
boxylic acid (ACPC).4a-c Short ACPC-containingR/â-peptides
display numerous NOEs between protons on non-adjacent residues,
which can be rationalized by proposing the adoption of two different
helical conformations that interconvert rapidly on the NMR time
scale, one containingi,i+3 CdO‚‚‚H-N H-bonds and the other
containingi,i+4 CdO‚‚‚H-N H-bonds.4a These secondary struc-
tures were designated the “11-helix” and the “14/15-helix”,
respectively, based on the number of atoms in the H-bonded rings.
Contemporaneous studies by Reiser et al. revealed a different type
of helical folding, involvingi,i-2 CdO‚‚‚H-N H-bonds, byR/â-
peptides containingcis-2-aminocyclopropanecarboxylic acid resi-
dues.3 Subsequent work of Sharma, Kunwar, and co-workers has
identified a “mixed” helix, containing bothi,i+3 CdO‚‚‚H-N and
i,i-1 CdO‚‚‚H-N H-bonds, inR/â-peptides lacking cyclically
constrained residues.5 Hofmann et al. have provided a comprehen-
sive computational evaluation of helix types available toR/â-
peptides containing a 1:1 backbone alternation.6

To date, the only reported crystallographic data for a 1:1R/â-
peptide have been obtained for octamer1, which contains ACPC
andR-aminoisobutyric acid (Aib).4c R/â-Peptide1 displays an 11-
helical conformation in the solid state. Since that structure was
reported, Seebach et al. have presented 2D NMR results forR/â-
peptides containing Aib and acyclicâ-residues, which were deduced
to adopt 14/15-helix-like conformations lacking internal H-bonds.7

Jagadeesh et al. have reported 2D NMR analysis ofR/â-peptides
containingL-Ala and cis-â-furanoid sugar amino acid residues.9

These workers have concluded that 11- and 14/15-helix H-bond
patterns are adopted simultaneously, that is, helical folding involves
the formation of bifurcated H-bonds (simultaneousi,i+3 andi,i+4
CdO‚‚‚H-N interactions). We considered this type of hybrid helix
when we originally observed that neither the 11- nor the 14/15-
helix could entirely explain the NOE patterns observed for short
ACPC-containingR/â-peptides, but we discarded this hypothesis
in favor of rapid interconversion between 11- and 14/15-helical
conformations.4a In light of subsequent developments,7,9 however,
the existence of an internally H-bonded 14/15-helix as originally
proposed may seem uncertain. This issue is important because the
14/15-helical secondary structure has been used as a basis for
function-oriented foldamer design.4b,d,f,g Here we resolve this
uncertainty by reporting the first crystal structure of anR/â-peptide
in the 14/15-helical conformation.

We wondered whether the Aib residues in1 might favor the
11-helix over the 14/15-helix. As a first step toward addressing
this question, we prepared and crystallized2, the analogue of1 in

which the N-terminal Aib residue is replaced by alanine.R/â-
Peptide2 adopts a chimeric conformation in the solid state (Figure
1). The carbonyl of the N-terminal Boc group forms ani,i+4 Cd
O‚‚‚H-N H-bond (14-membered ring), but the remainder of the
backbone amide groups are involved ini,i+3 CdO‚‚‚H-N H-bonds
(11-helix). This observation suggested that2 might represent an
R/â-peptide on the brink of forming a full-fledged 14/15-helix.

AmongR-amino acid oligomers, theR-helix (i,i+4 CdO‚‚‚H-N
H-bonding) is favored over the 310-helix (i,i+3 CdO‚‚‚H-N
H-bonding) by increasing peptide length,18 and 2D NMR evidence
suggests a similar trend amongR/â-peptides containing ACPC.4b,g

We therefore examined3, the homologue of2 containing one
additional residue at the C-terminus. We reasoned that thei,i+4
CdO‚‚‚H-N H-bonding observed at the N-terminus of2 might
be induced to propagate throughout the entire molecule if the
backbone were lengthened. Indeed, the crystal structure of3
revealed a fully 14/15-helical conformation.

The crystallographic data suggest that most intramolecular
H-bonds in1-3 have standard geometries. Thus, in 11-helical1,
the sixi,i+3 CdO‚‚‚H-N H-bonds display H‚‚‚O distances of 1.9-
2.1 Å, N‚‚‚O distances of 2.8-2.9 Å, and N-H‚‚‚O angles of 150-
170°. In the folded conformation of2, the fouri,i+3 CdO‚‚‚H-N
H-bonds have H‚‚‚O distances of 2.0-2.1 Å, N‚‚‚O distances of
2.8-2.9 Å, and N-H‚‚‚O angles of 150-180°, and the lonei,i+4
CdO‚‚‚H-N H-bond has an H‚‚‚O distance of 2.3 Å, an N‚‚‚O
distance of 3.1 Å, and an N-H‚‚‚O angle of 160°. In 14/15-helical
3, five of thei,i+4 CdO‚‚‚H-N H-bonds have standard geometries,
H‚‚‚O distances of 2.1-2.2 Å, N‚‚‚O distances of 2.9-3.0 Å, and
N-H‚‚‚O angles of 140-160°, while the i,i+4 CdO‚‚‚H-N
interaction at the N-terminus, H‚‚‚O distance) 2.8 Å and N‚‚‚O
distance) 3.5 Å, is a little longer than the conventional H-bond
length limit (H‚‚‚O distance< 2.5 Å, N‚‚‚O < 3.9 Å).19 In only
one case is there the possibility of bifurcated H-bonding: in addition
to thei,i+4 CdO‚‚‚H-N H-bond at the C-terminus of3, the amide
proton of the last Aib residue is involved in ani,i+3 CdO‚‚‚H-N
interaction with poorer geometry (H‚‚‚O distance) 2.8 Å, N‚‚‚O
distance) 3.3 Å, N-H‚‚‚O angle) 116°) (Figure 2). Average
backbone torsion angles are given in Table 1.

The crystallographic data for1-3 are consistent with the original
hypothesis that ACPC-containingR/â-peptides can adopt two
distinct helical conformations, the 11-helix and the 14/15-helix.4a

It is perilous to extrapolate conformational behavior from the solid
state to solution, but the fact that we see evidence for only one
bifurcated H-bond in these structures appears to argue against the
hypothesis of a regular hybrid helical conformation containing both
i,i+3 andi,i+4 CdO‚‚‚H-N H-bonds. The intriguing observation
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of both H-bond patterns within octamer2 seems to provide indirect
support for the hypothesis that shortR/â-peptides of this type can
interconvert between 11- and 14/15-helical conformations in

solution, as originally proposed.4a The high-resolution structural
data we have provided for the 14/15-helix secondary structure
should prove valuable for the design ofR/â-peptides that are
intended to perform specific functions.

Acknowledgment. This research was supported by NSF Grant
CHE-0551920. S.H.C. was supported in part by The Samsung
Scholarship Foundation. We thank Lara C. Spencer for the X-ray
crystallographic analysis. X-ray equipment purchase was supported
in part by grants from the NSF.

Supporting Information Available: Complete ref 14, experimental
procedure, and crystallographic data. This material is available free of
charge via the Internet at http://pubs.acs.org.

References
(1) (a) Gellman, S. H.Acc. Chem. Res.1998, 31, 173. (b) Hecht, S., Huc, I.,

Eds. Foldamers: Structure, Properties and Applications; Wiley-VCH:
Weinheim, Germany, 2007.

(2) Huck, B. R.; Fisk, J. D.; Gellman, S. H.Org. Lett.2000, 2, 2607.
(3) De Pol, S.; Zorn, C.; Klein, C. D.; Zerbe, O.; Reiser, O.Angew. Chem.,

Int. Ed. 2004, 43, 511.
(4) (a) Hayen, A.; Schmitt, M. A.; Ngassa, F. N.; Thomasson, K. A.; Gellman,

S. H.Angew. Chem., Int. Ed.2004, 43, 505. (b) Schmitt, M. A.; Weisblum,
B.; Gellman, S. H.J. Am. Chem. Soc.2004, 126, 6848. (c) Schmitt, M.
A.; Choi, S. H.; Guzei, I. A.; Gellman, S. H.J. Am. Chem. Soc.2005,
127, 13130. (d) Sadowsky, J. D.; Schmitt, M. A.; Lee, H.-S.; Umezawa,
N.; Wang, S.; Tomita, Y.; Gellman, S. H.J. Am. Chem. Soc.2005, 127,
11966. (e) Schmitt, M. A.; Choi, S. H.; Guzei, I. A.; Gellman, S. H.J.
Am. Chem. Soc.2006, 128, 4538. (f) Sadowsky, J. D.; Fairlie, W. D.;
Hadley, E. B.; Lee, H. S.; Umezawa, N.; Nikolovska-Coleska, Z.; Wang,
S. M.; Huang, D. C. S.; Tomita, Y.; Gellman, S. H.J. Am. Chem. Soc.
2007, 129, 139. (g) Schmitt, M. A.; Weisblum, B.; Gellman, S. H.J. Am.
Chem. Soc.2007, 129, 417. (h) Horne, W. S.; Price, J. L.; Keck, J. L.;
Gellman, S. H.J. Am. Chem. Soc.2007, 129, 4178. (i) Price, J. L.; Horne,
W. S.; Gellman, S. H.J. Am. Chem. Soc.2007, 129, 6376.

(5) (a) Sharma, G. V. M.; Nagendar, P.; Jayaprakash, P.; Krishna, P. R.;
Ramakrishna, K. V. S.; Kunwar, A. C.Angew. Chem., Int. Ed.2005, 44,
5878. (b) Srinivasulu, G.; Kumar, S. K.; Sharma, G. V. M.; Kunwar, A.
C. J. Org. Chem.2006, 71, 8395.

(6) Baldauf, C.; Gunther, R.; Hofmann, H. J.Biopolymers2006, 84, 408.
(7) Seebach, D.; Jaun, B.; Sebesta, R.; Mathad, R. I.; Flogel, O.; Limbach,

M.; Sellner, H.; Cottens, S.HelV. Chim. Acta2006, 89, 1801.
(8) Vilaivan, T.; Srisuwannaket, C.Org. Lett.2006, 8, 1897.
(9) Jagadeesh, B.; Prabhakar, A.; Sarma, G. D.; Chandrasekhar, S.; Chan-

drashekar, G.; Reddy, M. S.; Jagannadh, B.Chem. Commun.2007, 371.
(10) Olsen, C. A.; Bonke, G.; Vedel, L.; Adsersen, A.; Witt, M.; Franzhk, H.;

Jaroszewski, J. W.Org. Lett.2007, 9, 1549.
(11) Angelici, G.; Luppi, G.; Kaptein, B.; Broxterman, Q. B.; Hofmann, H. J.;

Tomasini, C.Eur. J. Org. Chem.2007, 2713.
(12) Zhu, X.; Yethiraj, A.; Cui, Q.J. Chem. Theory Comput.2007, 3, 1538.
(13) Zhong, Z.; Zhao, Y.Org. Lett.2007, 9, 2891.
(14) Gong, B.; et al.Proc. Natl. Acad. Sci. U.S.A.2002, 99, 11583.
(15) Yang, D.; Li, W.; Qu, J.; Luo, S. W.; Wu, Y. D.J. Am. Chem. Soc.2003,

125, 13018.
(16) For foldamers with heterogeneous backbones containingγ-amino acid

residues, see: (a) Baldauf, C.; Gunther, R.; Hofmann, H. J.J. Org. Chem.
2006, 71, 1200. (b) Sharma, G. V. M.; Jadhav, V. B.; Ramakrishna, K.
V. S.; Narsimulu, K.; Subash, V.; Kunwar, A. C.J. Am. Chem. Soc.2006,
128, 14657. (c) Baruah, P. K.; Sreedevi, N. K.; Gonnade, R.; Ravin-
dranathan, S.; Damodaran, K.; Hofmann, H. J.; Sanjayan, G. J.J. Org.
Chem.2007, 72, 636. (d) Vasudev, P. G.; Ananda, K.; Chatterjee, S.;
Aravinda, S.; Shamala, N.; Balaram, P.J. Am. Chem. Soc.2007, 129,
4039.

(17) ForR-peptides containing a few other residue types, see: (a) Roy, R. S.;
Gopi, H. N.; Ragothama, S.; Karle, I. L.; Balaram, P.Chem.sEur. J.
2006, 12, 3295. (b) Roy, R. S.; Karle, I. L.; Ragothama, S.; Balaram, P.
Proc. Natl. Acad. Sci U.S.A.2004, 101, 16478.

(18) Bolin, A. K.; Millhauser, G. L.Acc. Chem. Res.1999, 32, 1027 and
references therein.

(19) McDonald, I. K.; Thornton, J. M.J. Mol. Biol. 1994, 238, 777.

JA0753344

Figure 1. Crystal structures of2 and3: (top) views perpendicular to helical
axis; (bottom) views along the helical axis. Dotted lines indicate H-bonds.
The solvent molecules, minor components of the disordered atoms, and
non-amido hydrogen atoms are omitted for clarity.

Figure 2. Intramolecular hydrogen bonding patterns in the crystal structures
of 2 and3: (green) 14/15-helical, (blue) 11-helical. Dotted arrows indicate
possible H-bonding interactions.

Table 1. Average Backbone Torsion Angles (deg) from R/â-
Peptides 1-3a

R-residue â-residue

φ ψ φ θ ψ

11-helix -55(3) -40(6) -96(4) 94(6) -88(7)
14/15-helix -62(7) -38(3) -126(11) 83(6) -119(15)

a Unfolded C-terminal residues were excluded.
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